24 research outputs found

    Uridylation and adenylation of RNAs

    Get PDF
    The posttranscriptional addition of nontemplated nucleotides to the 3â€Č ends of RNA molecules can have a significant impact on their stability and biological function. It has been recently discovered that nontemplated addition of uridine or adenosine to the 3â€Č ends of RNAs occurs in different organisms ranging from algae to humans, and on different kinds of RNAs, such as histone mRNAs, mRNA fragments, U6 snRNA, mature small RNAs and their precursors etc. These modifications may lead to different outcomes, such as increasing RNA decay, promoting or inhibiting RNA processing, or changing RNA activity. Growing pieces of evidence have revealed that such modifications can be RNA sequence-specific and subjected to temporal or spatial regulation in development. RNA tailing and its outcomes have been associated with human diseases such as cancer. Here, we review recent developments in RNA uridylation and adenylation and discuss the future prospects in this research area

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    U-tail as a guardian against invading RNAs

    No full text
    RNA uridylation offers a basis for diverse post-transcriptional regulation. Two recent studies reveal new roles of uridylation in immune defense against viruses and retrotransposons. © 2018, Springer Nature America, In

    A genetics screen highlights emerging roles for CPL3, RST1 and URT1 in RNA metabolism and silencing.

    Get PDF
    Post-transcriptional gene silencing (PTGS) is a major mechanism regulating gene expression in higher eukaryotes. To identify novel players in PTGS, a forward genetics screen was performed on an Arabidopsis thaliana line overexpressing a strong growth-repressive gene, ETHYLENE RESPONSE FACTOR6 (ERF6). We identified six independent ethyl-methanesulfonate mutants rescuing the dwarfism of ERF6-overexpressing plants as a result of transgene silencing. Among the causative genes, ETHYLENE-INSENSITIVE5, SUPERKILLER2 and HASTY1 have previously been reported to inhibit PTGS. Notably, the three other causative genes have not, to date, been related to PTGS: UTP:RNA-URIDYLYLTRANSFERASE1 (URT1), C-TERMINAL DOMAIN PHOSPHATASE-LIKE3 (CPL3) and RESURRECTION1 (RST1). We show that these genes may participate in protecting the 3' end of transgene transcripts. We present a model in which URT1, CPL3 and RST1 are classified as PTGS suppressors, as compromisation of these genes provokes the accumulation of aberrant transcripts which, in turn, trigger the production of small interfering RNAs, initiating RNA silencing
    corecore